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Storage capacity of neural networks: effect of the 
fluctuations of the number of active neurons per memory 

Nicolas Brunelt 
Labomtoire de Physique Statistiquet, k a l e  Nomale Superieure, 24 Rue Lhomond, 75231 Paris 
Cedex 05. France 

Received 7 April 1994 

Abstract. The storage capacity in an amactor neural network with excitatory couplings is 
shown to depend not only on the h a i o n  of active neurons per pattern (or coding rate), but also 
on the fluctuations around this value. in the thermodynamical limit. The capacity is calculated in 
the case of exactly the same number of active neurons in every pattern. For every coding level 
the capacity is increased with respect to the case of random patterns. Results m t  supponed by 
numerical simulations done with an exhaustive search algorithm, and p.utly solve in the sparse 
coding limit the paradox of the discrepancy of the capacity of the Willshaw model with optimal 
capacity. 

The question of the optimal information capacity in attractor neural networks has been 
widely studied since the original work of Gardner [l]. A particularly interesting case is 
when the information is coded in a purely excitatory synaptic matrix, and when the allowed 
synaptic values are discrete (for example, J = 0.1). because in a biological network synaptic 
plasticity is believed to occur only for purely excitatory synapses, and it seems unlikely that 
a real synapse is able to maintain a large number of distinct stable states. In this paper 
I will reconsider the problem of the information capacity in the network with J = 0. 1, 
and show that the capacity depends not only on the coding rate of the memories, but also 
on the fluctuations around the mean number of active neurons in the memories, for every 
coding level. This partly solves the apparent paradox of the discrepancy of the capacity of 
the Wdlsbaw model with the optimal capacity [ 2 4 .  

The network I consider is composed of N binary neurons, whose activity is denoted by 
V, (i = 1 , .  . . , N ) .  If Vi = 1, neuron i is active,,while if Vi = 0, it is inactive. Neurons 
are interconnected by binary synapses (J i j  = 0, 1 for very i # j). The dynamics is discrete 
and neurons are updated according to the rule 

where 0 is the Heaviside function-@(x) = 1 if x > 0 and zero otherwise-and T is a 
fixed threshold. This network will perform as an autoassociative memory if, given a set of 
p memories {$  = 0 , l )  (i = 1 , .  . . , N, g = 1,. . , , p) stored in the synaptic matrix, every 
memory is an attractor of the dynamics of the network, i.e. 
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holds for every I.L and i. An example of such a network is provided by the Willshaw model 
[2] for which the synaptic prescription 

ensures, together with an appropriate threshold, that the memories are indeed memorized, 
if their number p does not exceed a critical value. 

A measure of the performance of the network is the ratio CY = p , / N ,  where pc is the 
largest number of memories that the network is able to store, in the thermodynamical limit. 
Another measure of performance is the information capacity of the network measured in 
bits per synapse, which is related to a! by the equation 

I = 0 1 [ - f I n 2 f - ( l -  f ) lnz ( I -  f)] 

where f is the average fraction of unit bits in the memories, or coding rate. This measure 
is more adequate in the case of sparse coding, i.e. f + 0, because in many cases 01 + 03 
in this limit, while I remains finite. In the case of binary synapses we have the upper bound 
I < 1. 

This quantity has been calculated for the Willshaw matrix in the sparse coding limit 
f - log N / N  and yields IW = In 2 - 0.69. Another approach has been to study the space 
of all possible matrices, in order to derive the optimal capacity [I], given by 

L p t  = max(~[lJij)l) 
I4 , l  

In the case of J = 0, l  couplings, and in the limit f + 0, one gets Iopt - 0.29 [3]. This is 
in striking disagreement with the Willshaw calculation since IW should be smaller than the 
optimal capacity. 

Several explanations have been proposed to account for this discrepancy [4]: 

The calculation in the case of the Willshaw model requires a vanishing signal-to-noise 
ratio, while the optimal capacity calculation requires that the memories are perfectly 
recalled, i.e. no errors are made while in the Willshaw calculation a number of errors 
that vanishes in the limit N -+ 03 is allowed. 
In the Willshaw calculation each memory has exactly the same number of active neurons, 
i.e 

E s ; = f N  
i 

for every I.L, while in the optimal capacity calculation memories are drawn according to 
the distribution 

(1) 
and thus there are fluctuations of the order of ./- around the mean number 
of active neurons per memory. 

Subsequently the information capacity of the Willshaw model has been calculated in 

P h ;  = v) = f m  - 1) + (1 - f)m 

two cases i4]: 
The capacity for the criteria of strictly no error, with patterns with exactly the same 
number of active neurons, is halved with respect to the criteria of vanishing signal-to- 
noise ratio, and hence in this case Iw -., 0.35. 
When one consider randomly drawn patterns instead of patterns with exactly the same 
number of active neurons, the capacity becomes IW - 0.23. This value is now consistent 
with the absolute capacity. 
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More generally it seems interesting to investigate the effects of error tolerance or of the 
fluctuations in the number of active neurons per pattern on the optimal capacity. In this 
paper we are concerned with the second issue. The first-more difficult-issue, will be the 
subject of a future publication [SI. In the following we show that these fluctuations turn out 
to have quite a drastic effect on the storage capacity, for every coding level f. Furthermore, 
we show that the optimal capacity of a network with J = 0 , l  couplings and patterns with 
exactly the same number of neurons is equal to the capacity of a network with J = -1, 1 
and random patterns. For the latter network fluctuations in the number of active neurons 
per pattern have no effect on the capacity, as is the case in all networks for which the mean 
synaptic value vanishes in the thermodynamical limit. 

lo the following we sketch the main steps of the calculation of the optimal capacity for 
memories with exactly the same number of active neurons. This calculation is performed 
with standard replica techniques and here we just emphasize the differences from the usual 
case, performed in [3]. The quantity we consider is the typical 'entropy' per synapse 

1 
SI. = ~(InT((tl!'l)) 

where T ( ( r ( ) )  is the number of couplings such that the p memories ( q f }  are attractors of 
the network, and (.) is an average over the distribution of patterns. We consider the two 
following distributions of patterns. 

(A) Random patterns with coding rate f: the average is performed with the distribution 
r 1 

The calculation of the optimal capacity in this case [3] gives the typical entropy QA. 
(B) Patterns with a fixed number fN of active neurons: the averaging is now done with 

and yields the typical entropy QB. 

In both cases the typical entropy depends only in the thermodynamical limit on CY = p / N  
and f .  For every f it is a decreasing function of a. One has Q(a = 0) = In2 and the 
optimal capacity (and thus the information capacity) is obtained when  CY) = 0. At this 
point replica-symmehy breaking occurs [6,3]. 

The calculation of the typical entropy proceeds along the following lines using the 
'replica trick' 

In(T") -- - lim - . (In T) 
N W O  n N  

The calculation of (T") is performed introducing n replicas ( J j j ] *  (a = 1, . . . , n)  

where TO is the number of possible couplings TO = ZN and 
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Then one introduces integral representations for the Heaviside functions 

This makes possible the averaging over the distribution of the memories. The averaging 
requires the calcuIation of 

where we have introduced 

The averaging in case A (equation 2) is immediate and one obtains 

In case B (equation 3) one has to introduce an integral representalion for the delta function, 
then a saddle-point method yields 

Thus the difference between cases A and B is in the last term of the above equation. 
The typical logarithm of the accessible volume is then obtained by a saddle-point 

method, after order parameters have been introduced and a replica-symmetric ansatz has 
been done. The result for cases A and B is 

~ A . B  = eX@q,p,Q,P.aGA,B(q, P.  Q v  ps U) 
where GA is given by 

where 

and 

and GB is simply related to CA by 

cB(q, Pv Q ,  P ,  U) GA(q - Qz, P .  Q( I  - e), Pv U), 
The order parameters, when taken at their saddle-point values, have the following 
interpretation: q is the typical overlap between the coupling vectors in two different replicas 
of the system, Q is the typical connectivity, i.e. the fraction of unit couplings, p and P are 
their respective conjugate parameters, and U is a parameter related to the optimal threshold. 
The capacity in both cases is obtained when Q vanishes. The results are as follows. 
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(A) For the standard coding [3] 
0 1 ~  = 0.59. 

ic - 0.29. (4) 

In the sparse-coding limit f -+ 0 the information content per synapse is, at 01 =a,, 

However, there is an uncertainty in this value since the limit is very hard to get 
numerically [3]. 

(B) In this case the capacity turns out to be equal to the capacity of a network with J = f l  
at the same coding level. The capacity in this case is well known [6,3]. For standard 
coding [6] 

01, = 0.83 

while in the sparse-coding limit [3] 

i ,  - 0.45. ( 5 )  
The two main conclusions are the following. 
(i) The Buctuations of the number of active neurons per pattern thus have an important 

effect on the storage capacity even in the limit of a large network, for every coding 
level. 

(ii) The estimates for the bounds on the storage capacity are now consistent with the 
estimates obtained for the Willshaw synaptic mabix in the sparse-coding limit [4]. 
These estimates are i, - 0.23 and i, - 0.35 for the Buctuating and non-fluctuating 
cases, to be compared with (4) and (5). 
The calculation can be repeated for any particular constraint on the synaptic matrix. It is 

found that taking distribution A and B makes a difference in all c a m  in which the average 
synaptic value does not vanish. For example, when all or a finite fraction of elements of 
the synaptic matrix are constrained to be positive, the capacity will be improved when one 
uses patterns with exactly the same number of active neurons. 

The dependence of the capacity in the fluctuations in the number of active neurons 
has been checked by numerical simulations in the case of the standard coding (f = 0.5). 
Since for discrete couplings there exists no polynomial algorithm guaranteed to converge to 
the optimal solution, I resort, as in [7], to enumeration of all possible couplings for small 
systems (up to N = 20). speeded up by the use of the Gray code. As already emphasized in 
[7], the use of binary patterns is problematic and a Gaussian distribution was used instead 
of the binary one. For each pattern drawn, the deviation of its total activity to the mean 
activity N/2 

N D =  E$'--- I i  21 

was calculated. The pattern was rejected if D was greater than some fixed value y-4%/2, 
where f i / Z  is the variance of the distribution of the total activities. Rejecting patterns 
with a large deviation D makes the variance of the resulting distribution of total activity 
decrease. The standard deviation U of the distribution becomes 

where G(x)  = exp(-x2/2)/2/Z;;. Decreasing the parameter y one gets a distribution of 
total activities more peaked around the mean, and in the limit y -+ 0 one gets a set of 
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patterns with exactly the same total activity. Thus for y = 00 the distribution is the usual 
one, while for y = 0 the variance vanishes, U = 0. 

The dependence of the capacity on the parameter y was investigated. Since the storage 
capacity of an amactor neural network is equal to the capacity of a perceptron which has to 
classify the same set of input patterns [I], I simulated a perceptron whose coupling vector 
was denoted by J .  Each set of patterns E was separated into two classes, E+ and E- with 
the same number of patterns. For every pattern q” the network produces the output h& 
given by 

Learning the set of pattems means that the network has to separate the two classes, i.e. 

The quality of learning is measured by the parameter 

A = min h’- maxh” 
&€E- ”€E+ 

l- 

-0.5 
0 0.1 0.2 0.3 

1/N 

I I 

Figure 1. Parameter A versus 1/N. for different values of y and U. Left y = m. Right: 
y=O.2 .  Forbolhc~es,~=0.5~0~,~=0.666.~+),~=0.8(0),~=I (x). 

For each set of patterns the optimal parameter A,, was obtained by enumeration of 
all the couplings, i.e. 

Amax = max A .  
J 

For a given set of parameters N ,  p and y the results were averaged over many samples 
of patterns (from 1000 for N = 20 to 50000 for N = 5). Then, for a given o[ = p / N  
and y ,  we perform an 1 / N  extrapolation by best quadratic fit of the experimental values. 
This extrapolation of Amax at N = CO is shown in figure 1, for y = 00 (i.e. the usual 
distribution), 1 and 0.2, and 01 = I ,  $, 4 , i .  Then for each value of y we plot the obtained 
value of Amax versus 01. A new extrapolation with a quadratic fit gives the value of or, 
at the point A,@) = 0. It is shown in figure 2, for y = 00 and y = 0.2. \Ne obtain 
as - 0.60 for y = 00 (to be compared with the analytical estimate LU, = 0.59). cyc - 0.75 
for y = 1, and ac = 0.82 for y = 0.2. This shows than there is already a substantial 
increase in the critical capacity when the fluctuations around the mean number of active 
neurons are halved, and if one takes a sharp distribution for the number of active neurons 
( y  = 0.2) one obtains a result very close to the analytic estimate for patterns with exactly 
the same number of active neurons (i.e. y = 0). 
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a 

Figure 2 A Venus a, for y = m (t), a d  y = 0.2 (0). The i n t e d o n  with A = 0 yields 
cc -. 0.6 and 0.82, respectively. 

Interestingly, a very simple scenario of learning dynamics [8] in an attractor neural 
network similar to the one discussed here (where the asymptotic values of the synaptic 
couplings are restricted to 0 and 1) leads to amacmrs where the number of active neurons 
fluctuate much less than the number of active neurons in the patterns presented to the 
network 191. 
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